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Abstract. We present the detailed study of the thermodynamics of vibrational modes in disordered elastic
systems such as the Bragg glass phase of lattices pinned by quenched impurities. Our study and our results
are valid within the (mean field) replica Gaussian variational method. We obtain an expression for the
internal energy in the quantum regime as a function of the saddle point solution, which is then expanded
in powers of � at low temperature T . In the calculation of the specific heat Cv a non trivial cancellation
of the term linear in T occurs, explicitly checked to second order in �. The final result is Cv ∝ T 3 at low
temperatures in dimension three and two. The prefactor is controlled by the pinning length. This result is
discussed in connection with other analytical or numerical studies.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Cx Static properties (order parameter, static
susceptibility, heat capacities, critical exponents, etc.) – 65.60.+a Thermal properties of amorphous solids
and glasses: heat capacity, thermal expansion, etc.

1 Introduction

Despite progress in analytical solutions of models of
glasses in solvable limits such as mean field, there is at
present little known information about detailed thermo-
dynamic properties of experimental interest such as the
specific heat. In particular an outstanding question is its
linear behavior at low temperature [1]. Such behavior was
measured in a large variety of experimental systems in-
cluding amorphous solids, disordered crystals and spin
glasses [2–4]. A phenomenological approach, based on the
existence of two level systems [5] was proposed leading
to a linear temperature dependence of the specific heat.
Despite the success of such prediction for many experi-
mental systems, the question of the validity and applica-
bility of such arguments is still under debate. In particu-
lar, for many glassy systems, the microscopic origin of the
assumed two level systems remains unclear.

Computing the specific heat from a microscopic model
is of course an extremely difficult problem for a disor-
dered system. However, mean field theory of quantum
spin glass, have been studied [6,7] leading to results in
agreement with the linear dependence of the specific heat.
Nevertheless the validity of the linear temperature depen-
dence is being challenged [8,9]. Another important class of
glasses to which these mean field methods have been ap-
plied with success to compute correlation functions [10],
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consists in disordered elastic systems. Such systems cover
a wide range of experimental situations such as charge
density waves [11], electron glasses [12,13], and flux lat-
tices [14–17], for which the quantum limit is of interest.
Thus both from the experimental and theoretical point
of view such disordered elastic systems are ideal to ad-
dress this important question of the behavior of the spe-
cific heat.

This is the question that we address in the present pa-
per. We consider these systems in the elastic limit when-
ever topological defects can be neglected. This is the case
within the Bragg glass phase which was studied previ-
ously in both classical [10] and quantum [18] limit using
the Gaussian variational approximation [19,10,18] to the
replicated Hamiltonian. We use in this paper the same
variational approach to compute the specific heat for these
systems. In two previous short papers [20,21], we have
summarized the result of the calculation of the specific
heat for these systems in classical and quantum limits, as
well as the applications to superconductors. In the present
paper we give a detailed exposition of the method. Indeed
two important questions must be addressed. In order to
obtain the correct temperature dependence, it is neces-
sary to push the understanding of the structure of the
mean field solution beyond what has been achieved in ref-
erence [18]. In addition obtaining the amplitude requires
performing a semiclassical expansion. Besides, for systems
in dimension d < 2, two saddle points solutions for the
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variational equations exist, one coming from the thermo-
dynamics and one from the so-called marginality condi-
tion. We discuss the respective roles of these solutions.

The outline of the paper is as follows. In Section 2
we formulate the problem of the calculation of the inter-
nal energy for an elastic system with quenched disorder.
In Section 3 we recall the replica variational method and
obtain a compact expression for the internal energy in
terms of the saddle point solution. This expression being
very hard to compute analytically we present a system-
atic expansion in powers of �, given that the specific heat
is a function Cv(β�, �). In Section 4 we compute the first
two terms of this expansion, the details being given in Ap-
pendix A and Appendix B. The result is a cancellation of
the linear term, resulting in Cv ∼ T 3.

2 Specific heat computation using functional
integral

2.1 Model

We consider a collection of interacting quantum objects of
mass M whose position variables are denoted uα(Ri, τ).
The equilibrium positions Ri in the absence of any fluc-
tuations form a perfect lattice of spacing a. Interactions
result in an elastic tensor Φα,β(q) which describes the en-
ergy associated to small displacements, the phonon de-
grees of freedom. Impurity disorder is modelled by a τ
independent Gaussian random potential U(x) directly
coupled to the local density ρ(x) =

∑
i δ(x − Ri −

u(Ri, τ)). We will describe systems in the weak disorder
regime a/Ra � 1 where Ra is the translational correla-
tion length, e.g. in a Bragg glass phase where the con-
dition |uα(Ri, τ) − uα(Ri + a, τ)| � a holds, no dislo-
cation being present. The system at equilibrium at tem-
perature T = 1/β is described by the partition function
Z = Tre−βH[Π,u] =

∫
DuDΠe−S/� with the Hamiltonian

H [Π, u] = Hph[Π, u] + Hdis[Π, u]:

Hph[Π, u] =
1
2

∫

q

Π(q)2

M
+
∑

α,β

uα(q)Φα,β(q)uβ(−q)

Hdis[Π, u] =
∫

ddxU(x)ρ(x, u(x)) (1)

and its associated Euclidean quantum action in imaginary
time τ

S[Π, u] = −
∫ β�

0

dτ

∫

q

iΠα(q, τ)∂τ uα(q, τ) + H [Π, u](2)

where u(q, τ) and its conjugated momentum Π(q, τ) sat-
isfy periodic boundary conditions, of period β�, along the
τ axis. One denotes by

∫
q
≡ ∫

BZ
ddq

(2π)d integration on the
first Brillouin zone. For simplicity we illustrate the calcu-
lation on a isotropic system with Φα,β(q) = cq2δαβ and
denote disorder correlations U(x)U(x′) = ∆(x− x′), with
U(x) = 0.

2.2 Pure phonons

We first consider the case of pure phonons, described by a
purely isotropic elastic Hamiltonian, i.e. (1) with U = 0:

Hph[Π, u] =
1
2

∫

q

Π(q)2

M
+ cq2u(q)u∗(q). (3)

One computes the specific heat per unit volume Cv(T ) of
this system (3) using the functional integral in imaginary
time (2), Cv(T ) being defined by

Cv(T ) =
1
Ω

∂〈Hph[Π, u]〉
∂T

(4)

〈Hph[Π, u]〉 =
1

Zph
Tr[Hph[Π, u]e−βHph[Π,u]]

with Ω the volume of the system. Hph[Π, u] being in-
dependent of the imaginary time τ , Hph[Π, u](τ) =
eτHph[Π,u]Hph ×e−τHph[Π,u] = Hph[Π, u], one writes
〈Hph[Π, u]〉 as

〈Hph[Π, u]〉=Z−1
ph

∫

DΠDue−
Sph

�

1
β�

∫ β�

0

dτHph[Π, u](τ)

(5)
where Sph is the Euclidean quantum action (2) corre-
sponding to (3). One introduces the Fourier transforms
(w.r.t. imaginary time variable) of the fields in terms of
Matsubara frequencies ωn = 2πn/(β�):

u(q, ωn) =
∫ β�

0

dτeiωnτu(q, τ) (6)

and similarly for Π(q, ωn). After integration over the
field Π in (5), one obtains by performing the change of
variable Π(q, τ) → Π(q, τ) + iM∂τu(q, τ)):

1
Ω
〈Hph[Π, u]〉 =

�

β�

∫

q

∑

n

cq2

Mω2
n + cq2

. (7)

Performing the sum over Matsubara frequencies, e.g. by
using the spectral representation of the 2-point Green
function 1/(Mω2

n + cq2) one obtains

1
Ω
〈Hph[Π, u]〉 = HZP

ph + �v

∫

q

|q|fB(v|q|) (8)

where HZP
ph is the (temperature independent) zero-point

energy, fB(x) = (eβ�x − 1)−1 is the Bose factor and v =√
c/M the pure phonon velocity. Computing the specific

heat (5) from (8) one recovers the Debye law for pure
phonons

CvDebye(T ) = Ad

(
T

�v

)d

+ O (T d+1
)

(9)

where Ad = Γ (2 + d)ζ(1 + d)Kd, with ζ(x) the Riemann
zeta function, Kd = Sd/(2π)d, Sd being the volume of
the d-dimensional unit sphere, e.g. A3 = 2π2/15. This
method using a functional integral formulation (5) is thus
a very convenient way to compute the specific heat of elas-
tic systems.
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2.3 Disordered case: general expression

We now extend this analysis to the disordered case (1)
and obtain the analogous formula of (7) for the disordered
average internal energy. We remind the expression of the
disordered elastic Hamiltonian

H [Π, u] = Hph[Π, u] +
∫

x

U(x)ρ(u(x), x) (10)

U(x)U(x′) = ∆(x − x′)

and denote by P (U(x)) the Gaussian distribution of the
disorder. As ρ(u(x), x) depends only on the field u(x) and
the disorder is τ − independent, we compute 〈H [Π, u]〉 in
one realization of the disordered potential in the same way
as for the pure case (5) with the substitution Hph[Π, u] →
H [Π, u] (11). To compute the average over the disorder,
we introduce replicas to deal with the denominator in (5),
using Z−1 = limk→0 Zk−1:

〈H〉 ≡ 〈H [Π, u]〉 =

lim
k→0

∫

DUP (U(x))
∫

DΠaDua 1
β�

∫ β�

0

dτH [Πa1 , ua1 ] (τ)

× e−
1
�

∑
a S[Πa,ua] (11)

where S[Πa, ua] is the action defined by (2) and a = 1, ..k
is a replica index, a1 being one of these replicas, and
DΠa ≡ DΠ1...Πk and similarly for Dua. As for the pure
case, the Gaussian integrals over the fields Πa is straight-
forwardly computed (performing the same change of vari-
able). To treat the integral over the disorder U(x), one
uses the identity for a Gaussian variables with correla-
tions ∆(x − x′) (11)

f : U exp (−f : U) = −f : ∆ : f exp
(

1
2
f : ∆ : f

)

(12)

for any vector f ≡ f(x) and where f : U =
∫

x f(x)U(x)
and f : ∆ : f =

∫
xx′ f(x)∆(x−x′)f(x′). Applying this for-

mula (12) to (11) with f(x) = 1
�

∑
a

∫ β�

0 dτρ(ua(x, τ), x)
(11), one obtains the exact formula for the internal energy:

〈H〉 =
�

β�

∑

n

∫

q

1
2

+
(
cq2 − Mω2

n

)
G̃(q, ωn)

− lim
k→0

1
β�2

1
k

k∑

a,b=1

∫ β�

0

dτ

∫ β�

0

dτ ′
∫

x

∫

x′
∆(x − x′)

× 〈ρ(ua(x, τ), x)ρ
(
ub (x′, τ ′) , x′)〉

rep
(13)

where G̃(q, ωn) ≡ 〈ua(q, ωn)ua∗(q, ωn)〉rep and the aver-
aged values in (15) 〈...〉rep =

∫ Dua...e−
Srep

� are computed
with the replicated action given below (16). Writing the
density ρ(u(x), x) as [10]

ρ(u(x), x) = ρ0



1 −∇ · u(x) +
∑

K �=0

eiK·(x−u(x))



 (14)

with K the reciprocal lattice vectors of the perfect lattice
and ρ0 ∝ a−2 the average density, the second term of (13)
can be written as, discarding irrelevant terms:

〈H〉 =
�

β�

∑

n

∫

q

1
2

+
(
cq2 − Mω2

n

)
G̃(q, ωn)

− lim
k→0

1
k

1
β�2

∫

ddxdτdτ ′
k∑

a,b=1

〈R(ua(x, τ)−ub(x, τ ′))〉rep

R(u) = ρ2
0

∑

K

∆K cos(K · u). (15)

The same kind of manipulations [10] lead to the following
replicated action

Srep[u] =
∫

q

∑

n,a

1
2β�

(
cq2 + Mω2

n

)
ua(q, ωn)ua(−q,−ωn)

− 1
2�

∫

ddxdτdτ ′∑

ab

R(ua(x, τ) − ub(x, τ ′)). (16)

In these expressions (15, 16), ∆K =
∫

ddxeiK·x∆(x) de-
note the harmonics of the disorder correlator at the recip-
rocal lattice vectors K. The exact expression (15) is the
starting point of our computation of the specific heat.

3 Variational computation

Given the complexity of the replicated action (16), we
study it within the Gaussian variational approxima-
tion [19,10]. The use of such a method for the calcula-
tion of the specific heat necessitates to compute the full
temperature and � dependence of the saddle point solu-
tion. Before establishing the formulas for the specific heat
in Section. 3.3, we present the full variational solution in
Sections. 3.1 and 3.2.

3.1 Saddle point equations

The variational method [19,10] is implemented by choos-
ing a Gaussian variational action S0, parameterized by
a k × k matrix in replica space G−1

ab (q, ωn):

S0 =
1

2β�

∫

q

∑

a,b

G−1
ab (q, ωn)ua(q, ωn)ub(−q,−ωn)

G−1
ab (q, ωn) = cq2δab − σab (17)

which minimizes the variational free energy

F var = F0 +
1
β�

〈Srep − S0〉S0 (18)

F0 =
1
β

∫

q

∑

n

(ln G)aa(q, ωn).

The disordered term in Srep (16) being purely local in
space, but bi-local in time the self energy does not de-
pend on q and depends only on ωn, thus σab ≡ σab(ωn).
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However, the disorder potential being τ -independent, non
diagonal terms (in replica space) such that σa�=b do exist
only [18] for ωn = 0. Indeed, before averaging over the
disorder, different replicas are independent:

Ga�=b,U =
〈
ua(x, τ)ub(0, 0)

〉
= 〈ua(x, τ)〉 〈ub(0, 0)

〉

= 〈ua(x, 0)〉 〈ub(0, 0)
〉
. (19)

In the limit k → 0, one parameterizes Gaa(q, ωn) by
G̃(q, ωn) and Ga�=b(q, ωn) par G(q, u), 0 < u < 1, and in a
similar way Ba�=b(τ) = 〈[ua(x, τ)−ub(x, 0)]2)〉/N by B̃(τ)
and B(u) independently of τ . Using the inversion rules of
hierarchical matrices one obtains the saddle point equa-
tions (directly written in the limit k → 0) by minimizing
the variational free energy F var (19),

G−1
c (q, ωn) =

∑

b

G−1
ab (q, ωn) = cq2 + Mω2

n (20)

+
2
�

∫ β�

0

dτ(1−cos (ωnτ))
(

V̂ ′
(
B̃(τ)

)
−
∫

1
0duV̂ ′(B(u))

)

σ(u, ωn) = δn,0
2β�

�
V̂ ′(B(u))

with

B(u) =
2�

β�

∫

q

∑

n�=0

Gc(q, ωn)

+
2�

β�

∫

q

(
G̃(q, ωn = 0) − G(q, ωn = 0, u)

)
(21)

B̃(τ) =
2�

β�

∑

n

∫

q

Gc(q, ωn)(1 − cos (ωnτ)) (22)

with V̂ (B) = −ρ2
0

∑
K ∆K exp (−BK2/2). An interesting

property of the above saddle point (21) is thus that replica
symmetry breaking is confined [18] to the mode ωn = 0.
The equation for this mode

σ(u, ωn) = δn,0
2β�

�
V̂ ′(B(u)) (23)

has been studied previously [18] (notice that this is iden-
tical for the one for a model with point-like disorder in
d dimensions studied in [19,10]). For the potentials with
power law correlators V̂ (x) = gx1−γ/(2(1 − γ)) there are
two generic cases: long range correlations γ(1 − 2/d) < 1
for which one has full replica symmetry breaking (RSB)
and short range correlations γ(1−2/d) > 1, for which one
has a one step RSB (and a transition to high temperature
replica symmetric (RS) phase). For the single cosine model
defined by (15) where the sum over K in R(u) is restricted
to the lowest harmonic, there is a one step RSB solution
for d ≤ 2 and a full RSB solution for d > 2. More realis-
tic models involving several length scales include several
of the above regimes [10]. The previous analysis of this
equation (23) revealed the existence of a breakpoint uc

such that σ(u) = σ(uc) for u ≥ uc. In the case of a full
RSB solution, σ(u) is a continuously varying function of u
for u < uc. In d ≤ 2, the single cosine model is instead

described, in the low temperature phase, by a one step
RSB solution such that σ(u) = 0 for u < uc.

Independently of the RSB scheme, one can write the
variational equations

G−1
c (q, ωn) = cq2 + Mω2

n + Σ(1 − δn,0) + I(ωn) (24)

I(ωn) =
2
�

∫ β�

0

dτ (1 − cos (ωnτ))
(
V̂ ′(B̃(τ)) − V̂ ′(B)

)

B = B(u > uc) =
2�

β�

∑

n

∫

q

1
cq2 + Mω2

n + Σ + I(ωn)

together with the expression of B̃(τ) (22) and where we
have used the definitions Σ = [σ](uc), [σ](u) = uσ(u) −∫ u

0 dvσ(v) together with the equation (23).

3.2 Solution of the variational equations

The general way to study the equation (23) has been pre-
sented in details in [18]. Here we present only the main
results relevant for our study.

3.2.1 Periodic structures in d > 2: marginally stable solution

In that case there exists a full RSB solution, the func-
tions B(u), σ(u) and [σ](u) being obtained by elimination
from the system

1 = −4V̂ ′′(B(u))J2([σ](u)) (25)

σ(u) =
2β�

�
V̂ ′(B(u))

Jn(x) =
∫

q

1
(cq2 + x)n .

Once this system (26) is solved for u < uc, the constants Σ
and B are unambiguously determined by equation (24)
together with the so-called marginality condition

1 = −4V̂ ′′(B)J2(Σ) (26)

⇔ Σ(4−d)/2 =
αd

cd/2
V̂ ′′(B) , αd =

πKd(d − 2)
sin πd/2

where the second line in (26) is valid only in the infinite
UV cut-off limit. In order to understand the finite temper-
ature behavior of the variational equations below uc, it is
useful to write the equations (26) in terms of the rescaled
variable w = β�u/�. One thus has

w =
β�u

�
(27)

σ(u) =
β�

�
s(w) (28)

[σ](u) = [s](w) (29)

where the function [s](w) = ws(w)−∫ w

0 dvs(v) is � and β�

independent. Indeed, differentiating (26), one obtains that
it is implicitly defined through:

w = 4
(J2([s]))3

J3([s])
V̂ ′′′

((
−V̂ ′′

)−1
(

1
J2([s])

))

. (30)
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Notice that for the single cosine model corresponding to
V̂ (B) = −W exp(−K2B/2) one has V̂ ′′′((−V̂ ′′)−1(x)) =
K2x/2, and equation (30) gives back [s](w) =
((4 − d)w/(2K2cd ×c−d/2))2/(d−2) with cd = (2 −
d)π1− d

2 /(2d+1 sin(πd/2) ×Γ [d/2]) (e.g. c3 = 1/(8π)) [10].
The function [σ](u) = [s](w) being independent of �

and β� (30), it follows from (26) that B(u) = B(w) is also
independent of � and β� below the breakpoint u < uc.
The equation (30) written at the breakpoint gives

wc ≡ wc(Σ) =
β�uc

�
= 4

(J2(Σ))3

J3(Σ)
V̂ ′′′(B). (31)

Finally, once the equation (30) is solved, wc, Σ, I(ωn)
which all depend both on � and � are determined by equa-
tions (24), (26) and (31) together with the definition (22).
Notice also that combining (26) and (31), one obtains

wcδB + 2J2(Σ)δΣ = 0 (32)

where δ stands for an infinitesimal variation: a useful iden-
tity, only valid for a full RSB solution, in the following
computations.

3.2.2 Periodic structures in d ≤ 2: thermodynamics vs.
marginality

The case d ≤ 2 is more subtle, since as noticed previ-
ously [18] the saddle point equations admit two solutions.
Which solution to choose was shown to be important for
the transport properties and will of course be important
for the specific heat as well as will be discussed in Sec-
tion 4.2. Let us examine here the two possible solutions.

For the single cosine model corresponding to V̂ (B) =
−W exp (−K2B/2), in dimension d ≤ 2, the variational
equation (23) admits a one step RSB solution given by [10]

[σ](u) = 0, u < uc (33)

[σ](u) = Σ = β�uc
2
�
V̂ ′(B), u ≥ uc. (34)

In this one step RSB case, one can use only (33, 24)
to determine the three quantities B, Σ and uc: thus one
equation is missing. In the statics, the breakpoint is then
usually obtained by minimizing the variational free en-
ergy F var with respect to uc, the so called thermodynam-
ical condition. It leads to in d < 2 [18]

β�uth
c = K2

�
2 − d

d
J1

(
Σth

)

⇔ wth
c = −K2 αd

2d

(
Σth

)(d−2)/2
c−d/2 (35)

where the second line in (35) is valid in the infinite UV
cut-off limit with αd given in (26). However, it is known
that this condition (35) gives incorrectly the behavior of
dynamical quantities such that the conductivity [18]. A

distinct choice is to impose the marginality condition (26)
which, given the relation (33)

1 = −4V̂ ′′(Bmg)J2(Σmg)

wmg
c = −K2 αd

4
Σ(d−2)/2c−d/2 (36)

which allows to obtain the correct dynamical behavior.
One can show, using a Keldysh mean field approach and
performing analytical continuation to imaginary time [22],
that this is indeed the correct solution from the dynamical
point of view, i.e., if one considers, in an infinite system,
the large time limit where time translational invariance
and equilibrium fluctuation dissipation theorem hold.

Finally, for the special case d = 2, these two condi-
tions (35) and (36) coincide and there is no ambiguity in
that case. Therefore, in the following we will treat this
case together with the full RSB one in d > 2.

3.3 Internal energy 〈H〉 within variational method

In this section we use the variational method, and iden-
tities valid at the saddle point, to derive a compact and
useful expression for the internal energy 〈H〉 (15) which is
analyzed in the following Sections. The idea is indeed to
compute the averaged values in (15) with the trial gaussian
action S0 (17) instead of the exact one Srep (16). One
can show that thanks to the variational equations, it is
equivalent to compute Cv(T ) using the variational free
energy (19) Cv(T ) = −T∂2F var/∂T 2 instead of the exact
one.

We start by deriving some identities which will be use-
ful below to replace the kinetic term ∝ ∫q

∑
n cq2G̃(q, ωn)

in (15) by a more convenient one. First we remind that
G̃(q, ωn) = Gc(q, ωn) for ωn �= 0 (a consequence of the
τ -independence of the disorder (19)). Using simply the
definition of σab(q, ωn) (17) and G−1

c (q, ωn) (21) one has

σaa(q, ωn) = cq2 − G−1
c (q, ωn) − δn,0

∑

b�=a

σab. (37)

Using (37) together with the identity
∑

b Gab(q, ωn)
G−1

bc (q, ωn) = δac, one obtains in the limit k → 0

cq2G̃(q, ωn) = cq2Gc(q, ωn) (38)

+δn,0
2β�

�

∫ 1

0

du
(
G̃(q, ωn = 0) − G(q, u)

)
V̂ ′(B(u))

where we have used G−1
c (q, ωn = 0) = cq2 and the

variational equation (23). Using the variational equation
for I(ωn) and the identity

∫ 1

0 duV ′B(u) = V ′(B) − �

2β�
Σ

one has

�

2β�

∑

n

Gc(q, ωn)(Σ(1 − δn,0) + I(ωn)) = (39)

1
2�

∫ β�

0

dτB̃(τ)V̂ ′
(
B̃(τ)

)
−
∑

n�=0

∫ 1

0

duGc(q, ωn)V̂ ′(B(u)).
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Combining (38, 39) and using the definition of B(u) (24)
one obtains

�

2β�

∑

n

∫

q

cq2G̃(q, ωn) (40)

=
�

2β�

∑

n

∫

q

cq2 + Σ + I(ωn)
cq2 + Σ + Mω2

n + I(ωn)

− 1
2�

∫ β�

0

dτB̃(τ)V̂ ′(B̃(τ)) +
β�

2�

∫ 1

0

duB(u)V̂ ′(B(u)).

This last expression (40) allows to write a compact expres-
sion for 〈H〉 (15) computed within the variational method
under the form

1
Ω
〈H〉 =

�

β�

∑

n

∫

q

cq2 + Σ + I(ωn)
cq2 + Σ + Mω2

n + I(ωn)
(41)

+
∫ β�

0

dτ

�

[
F
(
B̃(τ)

)
−F (B)

]
−
∫ wc

0

dw[F (B(w))−F (B)]

where F (X) = V̂ (X) − X
2 V̂ ′(X) and wc given in (31).

Although this form is compact and convenient, its tem-
perature dependence is hard to extract, and we will resort
to an expansion in powers of �.

4 Semi-classical expansion: lowest order

In this section we extract the temperature dependence of
the specific heat from (41). In order to do so we use an
interesting property of the variational equations (24, 26):
the solution, as well as the internal energy (41) can be
organized in an expansion in � keeping β� fixed. To tackle
analytically these variational equations, we will thus or-
ganize our calculations using this expansion for any quan-
tity (not designated by a calligraphic letter) Q(�, β�) =∑∞

0 �
nQn(β�).

The calculation of the specific heat to a given order in
the expansion requires the knowledge of the saddle point
solution quantities, including I(ωn), to the same order.
Such an analysis of the saddle point solution was per-
formed previously [18] only to lowest order. We start by
recalling this analysis and extracting from it the specific
heat to lowest order.

In order to check whether the obtained temperature
dependence is correctly captured by the lowest order cal-
culation, we examine in Section 5 the higher orders.

4.1 d ≥ 2

The analysis of the variational equations (24, 26) leads to
the following equations for I0(ωn)

I0(ωn) =

− 4V̂ ′′(0)
(
J1(Σ0) − J1

(
Σ0 +

c

v2
ω2

n + I0(ωn)
))

(42)

and for Σ0

1 = −4V̂ ′′(0)J2(Σ0). (43)

Because of the marginality condition (43), the func-
tion I0(ωn) is non analytic, its low frequency behavior
being given by

I0(ωn) ∼
√

c

v2

J2(Σ0)
J3(Σ0)

|ωn| + O (ω2
n

)
. (44)

The marginality condition (43) thus leads to a gapless
excitation spectrum. Indeed, the low frequency behavior of
the analytical continuation I0(ωn → −iω + 0+) = I ′0(ω)+
iI ′′0 (ω) reads

I ′0(ω) ∼ Aω2 , I ′′0 (ω) ∼ −Bω (45)

with A = c
v2 (1 − J2J4

2J 2
3

) and B =
√

c
v2

J2
J3

, where Jn =
Jn(Σ0). Notice also that at this lowest order the equa-
tions (42, 43) show that I0(ωn) and Σ0 are indepen-
dent of β� (I0(ωn)) depends of course implicitly of β�

through ωn). One then obtains the lowest order expan-
sion from (41) 〈H〉/Ω = H0 + �H1(β�) + O(�2)

H0 = −2F ′(0)J1(Σ0) −
∫ wc0

0

dw[F (B(w)) − F (0)]

H1 =
1
β�

∑

n

∫

q

cq2 + Σ0 + I0(ωn)
cq2 + c

v2 ω2
n + Σ0 + I0(ωn)

+F ′(0) [2Σ1J2 (Σ0) + wc0B1] (46)

where we have used that B(w) is �-independent for w <
wc as well as limw→wc− B(w) = B in the case of a full
RSB solution and F ′′(0) = 0. From (32), the last terms in
expression (46) just cancel leading simply to

H1 =
1
β�

∑

n

∫

q

cq2 + Σ0 + I0(ωn)
cq2 + c

v2 ω2
n + Σ0 + I0(ωn)

. (47)

From equation (31), one has that wc0 ≡ wc0(Σ0) is inde-
pendent of β�, as well as B(w) for w < wc such that H0 is
β� independent. To compute the specific heat to lowest or-
der in this � expansion, Cv = Cv0(β�)+O(�), one thus fo-
cuses on H1, whose temperature dependence is contained
in the Matsubara frequencies. Transforming the discrete
sum over Mastsubara frequencies in (47) in an integral one
obtains,

�H1 =
∫ +∞

−∞

dω

π
�ωρ(ω)fB(ω) (48)

ρ(ω) =
c

v2
ω

∫

q

ImGc(q, ωn → −iω + 0+)

=
∫

q

c

v2
ω

−I ′′0 (ω)
(
cq2− c

v2 ω2+Σ0+I ′0(ω)2+(I ′′0 (ω))2
) (49)

where ρ(ω) is the density of states. All the temperature
dependence in (48) is now contained in the Bose factor. It
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follows from (48) that

Cv0(T ) = (β�)2
∫ ∞

−∞

dω

4π

ρ(ω)ω2

sinh2 β�ω/2
. (50)

The low temperature behavior of the integral in (50)
is governed by the low frequency behavior of the den-
sity of states ρ(ω) ∼ ω2 (49, 45), which then leads to
Cv0(T ) ∼ T 3 in all dimensions d ≥ 2. To this lowest
order, there is thus no linear nor quadratic term in T
in the specific heat. The specific heat has the dimension
of the inverse of a volume, its low temperature behav-
ior is then in general characterized by a typical length
scale and an energy scale. In our problem, a natural en-
ergy scale Tp is given by the pinning frequency ωp with
Tp = �ωp = �v

√
Σ0/c = �v/Rc, where Rc is the Larkin

length. From (50), one obtains

Cv(T ) ∼
4π4

15
KdR

−d
c FCv [Rc/a]

(
T

Tp

)3

+ O (�, (T/�)4
)

(51)

where FCv(x) is a scaling function with asymptotic behav-
iors given by

FCv [x] ∼ 1√
4 − d

∣
∣
∣
∣

d − 2
sin πd/2

∣
∣
∣
∣ x � 1 (52)

FCv [x] ∼ 2d+1

d
πd−1xd x � 1. (53)

Thus, at very weak disorder, Rc � a (52), and the typical
volume associated to the specific heat is Rd

c , although at
stronger disorder Rc � a (53) it becomes ad, the scaling
function FCv (x) describing the crossover from one regime
to the other. Notice also that, in d = 3, in the limiting case
Rc/a → ∞, (51) together with (52) and K3 = 1/(2π2) give
back exactly the Debye formula (9) for pure phonons.

Our results are thus at variance with the naive lin-
ear T expected from the two level system phenomenol-
ogy. Contrarily to the pure case, the specific heat is now
proportional to T 3 independently of the dimension. This
specific heat reflects the density of states of the modes of
vibration of the disordered system. A formula such as (50)
shows that the specific heat would be the same than the
one for free independent vibrational modes with a den-
sity of states ρ(ω) ∼ ω2. Note however, that since here
the modes are not independent the precise calculation of
the specific heat cannot be done naively and requires the
full calculation of the energy, as we have performed in the
present paper.

4.2 Periodic structure in d < 2

In that case, where there is a one-step RSB solution,
the equation for I0(ωn) is also given by (42) but the
choice of the thermodynamical condition (35) leads to [18]
Ith
0 (ωn) ∝ ω2

n, for small ωn, and indicates a gap in the en-
ergy spectrum.

Instead, if one uses the marginality condition (36), the
behavior is then similar to the previous full RSB solu-
tion with [18] Img

0 (ωn) ∝ |ωn|, and describes a gapless en-
ergy spectrum. As discussed in the previous Section 3.2.2,
the marginality condition is the consistent prescription
(within this Mean Field approach) to compute dynami-
cal quantities.

We now turn to the computation of the internal en-
ergy in both cases (35, 36). In that case, where there is
a one step RSB solution, the function B(w) is now dis-
continuous at the breakpoint wc. From this discontinuity
results an other contribution to H1 compared to expres-
sion for the full RSB case (46). Indeed in that case one
has in both cases:

H0 = −2F ′(0)J1(Σ0) + wc0F (0)

H1 =
1

β�

∑

n

∫

q

cq2 + Σ0 + I0(ωn)
cq2 + c

v2 ω2
n + Σ0 + I0(ωn)

+F ′(0)[2Σ1J2(Σ0) + wc0B1] + wc1F (0) (54)

where H0 is still temperature independent. Notice that
here, one can not use the general formula (32) valid only
for a full RSB. If one uses the thermodynamical condition,
one has for the periodic case V̂ (B) = −W exp (−K2B/2)

H1
th =

1
β�

∑

n

∫

q

cq2+Σth
0 +Ith

0 (ωn)
cq2+ c

v2 ω2
n+Σth

0 +Ith
0 (ωn)

+∆H1
th

∆H1
th = V̂ (0)

(
wth

c 1

2
+

Σ1

2Σ0
wth

c 0 −
K2

2
Σth

1 J2

(
Σth

0

)
)

= V̂ (0)

(
d

4
wth

c 0

Σth
1

Σth
0

−K2 Σth
1

Σth
0

Kd
2 − d

8
π
(
Σth

0

)(d−2)/2

sinπd/2

)

= 0 (55)

where we have used (35). One thus obtains formally
the same expression as previously obtained for the full
RSB case (47). But here, as Ith

0 (ωn) ∝ ω2
n, describing a

gapped excitation spectrum, one obtains that the specific
heat Cth

v 0(T ) vanishes exponentially at low T . If one im-
poses instead the marginality condition equation (36) one
obtains, using (33)

Hmg
1 =

1
β�

∑

n

∫

q

cq2+Σmg
0 +Img

0 (ωn)
cq2+ c

v2 ω2
n+Σmg

0 +Img
0 (ωn)

+∆H1
mg

∆H1
mg =

Σmg
0 Bmg

1

2

(
1
2
− V̂ (0)V̂ ′′(0)

V̂ ′′(0)2

+
1

4 − d

(
2V̂ (0)V̂ ′′′(0)
V̂ ′(0)V̂ ′′(0)

− V̂ ′(0)V̂ ′′′(0)
V̂ ′′(0)2

))

(56)

= Σmg
0

d − 2
2(4 − d)

�

β�

∑

n

∫

q

1
cq2+ c

v2 ω2
n+Σmg

0 +Img
0 (ωn)

.
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This results in the low temperature behavior of Cmg
v 0(T )

Cmg
v 0(T ) = (β�)2

∫ ∞

−∞

dω

4π

ρmg(ω)
(
ω2 + (Σmg

0 ) d−2
2(4−d)

)

sinh2 β�ω/2

∼ Σmg
0

d − 2
2(4 − d)

T

�
+ O

((
T

�

)3
)

(57)

which is linear in T but negative for d < 2.
This shows explicitly in that case the inconsistency

of the marginality condition (26) to compute thermody-
namical quantities. That for such glassy system one has
carefully to distinguish between thermodynamics and dy-
namics quantities occurs also in other physical quantities.
The capacitance (or compressibility) is also different de-
pending on whether one considers the thermodynamics
one or the small frequency one [13,12,23]. The calculation
of the specific heat clearly shows that for a thermody-
namic quantity one should not use the criterion given by
the marginality condition. The discussion of Section 3.2.2
suggests that the specific heat defined by the marginality
condition (i.e. negative in the present case) could corre-
spond to an experiment on a aging system using slow time
dependent heat.

Using the thermodynamic saddle point equation, on
the other hand gives in one dimension (more generally
for d < 2) an exponentially small specific heat at low
temperature due to a gap. This is clearly an artefact of the
variational approach. Corrections away from mean-field
will most likely transform this gap into a pseudo gap, and
yield a T α behavior for the specific heat. It is reasonable
to surmise that the exponent α is larger than three and
thus that the variational method attempts to reproduce
such a large power by artificially inducing a gap. Indeed
some studies of one-dimensional systems [24–26] suggest
a powerlaw behavior ρ(ω) ∼ ω4. Such a density of state
would lead to a T 5 behavior for the specific heat.

5 Beyond the leading order

Given the fact that the linear temperature dependence
disappears in (50), it is important to know whether this
property holds to higher orders. We thus derive explicitly
the solution to the next order. In doing so we unravel a
structure of the variational solution not present to leading
order.

5.1 A need for a singular self energy in d ≥ 2

We first need to extend the study of the variational equa-
tions to next order, allowing to extract Σ1 and I1(ωn).
To this order, as we will see, this quantity becomes β�

dependent. From (24) and (26), one obtains

Σ1 =
V̂ ′′′(0)

−8
(
V̂ ′′(0)

)2

J3(Σ0)
B1, B1 =

2
β�

∑

n

K1(ωn)

Σ1 + I1(ωn) =
1

1 + 4V̂ ′′(0)K2(ωn)

(

B1I0(ωn)
V̂ ′′′(0)
V̂ ′′(0)

+
4V̂ ′′′(0)

β�

∑

m

K1(ωm)(K1(ωm)−K1(ωm+ωn))

)

(58)

Kp(ωn) =
∫

q

1
(cq2 + Mω2

n + Σ0 + I0(ωn))p . (59)

Note that in the limit ωn → 0 the denominator in the l.h.s
of (58) behaves as −8V̂ ′′(0)I0(ωn)J3(Σ0) and thus the
first term yields exactly Σ1 in this limit. Given the com-
plexity of the second term in the l.h.s of (58), we analyze
it by expanding it at low temperature, i.e. high β. This
expansion can be performed using the Euler-MacLaurin
formula or, equivalently, a spectral representation of the
Green function Gc(q, ωn) (see Appendix 6 for details).
It yields

4V̂ ′′′(0)
(β�)

∑

m

K1(ωm)(K1(ωm) − K1(ωn + ωn)) (60)

= 4V̂ ′′′(0)
∫ +∞

−∞

dω

2π
K1(ω)(K1(ω) −K1(ω + ωn))

−
(

T

�

)2

I0(ωn)
V̂ ′′′(0)
V̂ ′′(0)

2π

3

∫

q

A′
0(q, 0) + O

((
T

�

)4
)

with the definition

A′
0(q, ω) = ∂ωA0(q, ω)

A0(q, ω) = ImGc

(
q, ωn → −iω + 0+

)
(61)

and where we have used the self-consistent equation
for I0(ωn) (42). Although the first term in (60), corre-
sponding to the dominant one in the limit (β�) → ∞, be-
haves like ω2

n and leads to a linear term, ∝|ωn| in I1(ωn)
(notice that I0(ω+ωn) is well defined and can be explicitly
computed (42)), the second term in (60) is linear in ωn,
and produces a new term C̃ in I1(ωn) (we remind that
I1(ωn = 0) = 0 by definition (24)):

I1(ωn) = C̃(1 − δn,0) + Ĩ1(ωn) (62)

C̃ =
(

T

�

)2
π

12
V̂ ′′′(0)

J3(V̂ ′′(0))2

∫

q

A′
0(q, 0) + O

((
T

�

)4
)

where Ĩ1(ωn) is a well defined function such that Ĩ1(ωn) ∝
|ωn| for small ωn. Notice also that this term C̃ arises only
at finite temperature. Finally, combining equation (60) and

B1 =
2

β�

∑

n

K1(ωn) = 2
∫ ∞

−∞

dω

2π
K1(ω) (63)

+
(

T

�

)2 2π

3

∫

q

A′
0(q, 0) + O

((
T

�

)4
)
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it follows that the terms of order (T/�)2 in (58), for ωn �=
0, exactly cancel leading to

Σ1 + I1(ωn) =
2V̂ ′′′(0)

1 + 4V̂ ′′(0)K2(ωn)

×
∫ +∞

−∞

dω

2π
K1(ω)

(
I0(ωn)
V̂ ′′(0)

+ 2(K1(ω) −K1(ω + ωn))

)

+O

((
T

�

)4
)

, ωn �= 0. (64)

Note that, although at this order Σ1 and I1(ωn) admits
a low temperature expansion involving only even powers
of β� (see Appendix 6 for more details), the presence of
the peculiar term C̃ in (62) generates however odd powers
of β� at higher orders of this semi-classical expansion.
Indeed considering the definition of B (24), one has to
handle with care the sum over Matsubara frequencies and
isolate the mode ωn = 0 in the following way

B =
�

2

β�
C̃

∫

q

1

(cq2+Σ0+Σ1)
(
cq2+Σ0+Σ1+C̃

) (65)

+
�

β�

∑

n

∫

q

1

cq2+Σ0+�

(
Σ1+C̃

)
+I0(ωn)+�Ĩ1(ωn)

.

Under this form, the sum over ωn can be performed safely,
and will itself admit a low T expansion in even powers
of β�. However, the first term in (65) will generate a con-
tribution to Σ2 (and consequently also to I2(ωn)) propor-
tional to (T/�)3, thus generating odd powers of T .

As we will discuss in the next subsection, (64) ensures
that the temperature dependence given by the lowest or-
der term is indeed correct. The property (64) can be shown
to hold in fact to all orders [9] in � and to apply also to
other models of glasses.

5.2 Specific heat

We first focus on the expansion of 〈H〉 (41) to order �
2

and compute H2. The first term in (41) is simply expanded
by substituting Σ and I(ωn) by their own expansion. We
will leave it under this form (i.e. as in (47) by substituting
Σ0 → Σ0+�Σ1 and similarly I0(ωn) → I0(ωn)+�I1(ωn)),
which can then be easily expanded at low temperature. At
this order O(�2) however, the second line of (41) leads to a
non trivial contribution which, after some manipulations,
can be written as

〈H〉 − H0 = (66)
�

β�

∑

n

∫

q

cq2 + Σ0 + �Σ1 + I0(ωn) + �I1(ωn)
cq2 + Mω2

n + Σ0 + �Σ1 + I0(ωn) + �I1(ωn)

−�
2 V̂ ′′′(0)

V̂ ′′(0)
1

2(β�)2
∑

n

K1(ωn)
∑

n

I0(ωn)K1(ωn) (67)

+
2�

2

3
V̂ ′′′(0)

1
(β�)2

∑

m,n

K1(ωn)K1(ωm)K1(ωn + ωn)

where H0, which is β� independent is given in (46). From
this expression of 〈H〉 to order O(�2) (66), we now want
to compute the low temperature expansion to obtain the
specific heat Cv(T ) to order O(�). The analysis of the first
term in (66) can be done similarly to H1 (48). And as
we showed previously, the finite temperature corrections
to Σ1+I1(ωn) behave as T 4 (64) (note that the peculiarity
of the mode ωn = 0 disappears in the first term of (66)),
one obtains that

�

β�

∑

n

∫

q

cq2 + Σ0 + �Σ1 + I0(ωn) + �I1(ωn)
cq2 + Mω2

n + Σ0 + �Σ1 + I0(ωn) + �I1(ωn)

∝
(

T

�

)4

+ O

((
T

�

)6

�
3

)

. (68)

Given the complexity of the calculations, we did not intend
to compute the amplitude of this term. We now turn to
the analysis of the low temperature behavior of the last
two terms in (66). As the specific heat vanishes at zero
temperature, the first non vanishing finite temperature
correction in (66) is a priori of order 1/(β�)2. As shown in
Appendix A.3, it turns out that this term exactly cancels
between these last two terms in (66), leading also to

−�
2 V̂ ′′′(0)

V̂ ′′(0)
1

2(β�)2
∑

n

K1(ωn)
∑

n

I0(ωn)K1(ωn)

+
2�

2

3
V̂ ′′′(0)

1
(β�)2

∑

m,n

K1(ωn)K1(ωm)K1(ωn + ωn)

∝ �
2

(
T

�

)4

. (69)

Therefore, combining (68) and (69) together with (66),
one obtains that

〈H〉 − H0 ∝
(

T

�

)4

+ O

((
T

�

)6

, �3

)

(70)

Cv(T ) ∝
(

T

�

)3

+ O

((
T

�

)5

, �2

)

(71)

which shows explicitly the cancellation of the term linear
in T in Cv(T ) up to order O(�2). The term (70) gives a
correction to the amplitude of the T 3 term in the specific
heat (50).

6 Conclusion

In this paper we have studied the specific heat of a dis-
ordered elastic system. Using a variational approach, we
have shown that the leading temperature dependence of
the specific heat is Cv ∝ T 3 at low temperatures for di-
mensions d ≥ 2. We have computed the prefactor of the
T 3 law up to the second order in a semi-classical expan-
sion in �. It exhibits a dependence in the Larkin pinning
length due to disorder. We have showed up to order �

2
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that linear temperature dependence cancels in the spe-
cific heat. This property is quite general and is proved to
all orders using a different approach in reference [9] where
similar consequences are shown to hold for quantum spin
glass models.

We thus find results at variance with the commonly be-
lieved linear temperature dependence stemming from e.g.
a two level system. In the context of structural glasses, the
linear in T term is also commonly inferred from anhar-
monicity and disordered elastic constants. In the present
problem, these are highly irrelevant perturbations to the
model considered here (1) and we thus do not expect that
they will modify the low T behavior we have obtained.
They will however produce a linear in T contribution
to Cv(T ) in the classical regime [27].

The T 3 dependence of the specific heat also holds
for non periodic manifolds, such as polymers or inter-
faces, whenever they can be solved by a continuous replica
symmetry broken ansatz (or its limiting case of one step
marginal RSB). Indeed the results we obtained in this pa-
per do not rely on the periodicity of the elastic system.
In the case of manifolds, the dependence of the specific
heat we obtained becomes exact in the limit of an infinite
number of components.

For periodic systems, the variational method is only an
approximation, and it would thus be interesting to check
whether the powerlaw T 3 predicted here, has corrections
away from mean-field. In particular, the question whether
soliton-like excitations, which may not be treated accu-
rately by the present method, could reestablish a linear in
T contribution to Cv(T ) from two-level system argument
remains an open question. It is however important to note
that periodic systems have been shown to be stable, for
disorder weaker than a finite threshold, to the proliferation
of topological defects induced by disorder in dimensions
d > 2. For point like disorder this leads to the existence of
a Bragg glass phase [10,16,17]. In such a phase, one would
expect the Gaussian approximation to be an accurate one,
and thus the present results to hold. On the other hand
since for d ≤ 2 topological defects (soliton like excitations)
are generated by disorder [10,28,29], they should be taken
into account for the specific heat, leading most certainly
to additional contributions compared to the ones of the
purely Gaussian approximation. Such a check of soliton
contributions would most likely need numerical investiga-
tions of this problem.

For d < 2 we showed that within the framework of the
variational method it is incorrect to use the marginality
condition criterion to compute the thermodynamic spe-
cific heat. The thermodynamic saddle point leads to an
exponentially small specific heat for d < 2. As we dis-
cussed in this paper, this is most likely an artefact of
the mean-field approximation. Corrections to mean-field
should transform this gap into a pseudo-gap, with pow-
erlaw density of states ρ(ω) ∝ ωα−1 leading to a specific
heat T α. The exponent α is likely to be larger than three
in d = 1. The presence of a gap in the mean-field solution
results from the best attempt of the variational method
to mimic this high power. Such behavior in the density

of states is indeed compatible with studies in one dimen-
sion [24–26], suggesting ρ(ω) ∝ ω4.

An important question is thus how this density of
states evolves when going to higher dimensions. The cal-
culations performed in the present paper suggest that for
d ≥ 2 the density of states becomes ρ(ω) ∝ ω2. Note that
this is at variance with the recent proposal [30] that it
remains ρ(ω) ∝ ω4 as in one dimension. If this is indeed
correct it would raise the puzzling question to understand
which mechanism can lower the density of modes com-
pared to mean-field.
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Appendix A: Evaluation of Matsubara sums
at low temperature

In this section, we show in detail how to extract the low T
behavior of the sum over Matsubara frequencies in the
equation for Σ1 + I1(ωn) (58), which turns out to be cru-
cial to understand the full structure of the saddle point so-
lution. Although the standard way of studying such a sum
is to use the spectral representation of the Green function,
we show how to analyse it using less sophisticated method,
namely the Euler Mac-Laurin formula. For this particular
case, this method turns out to be very simple. Its equiv-
alence with the conventional method is established in the
last paragraph of this section.

A.1 A first stage with Euler MacLaurin

The aim is to evaluate the low T expansion of:

S = 2π
T

�

∑

n

g(|ωn|) (72)

with ωn = 2πnT/�, a Matsubara frequency, and let us
add a cutoff |n| < N , e.g. N = �Ω/(2πT ). We use the
Euler-MacLaurin formula for any smooth enough func-
tion f(x):

f(0) + 2
N−1∑

1

f(n) = 2
∫ N

0

dkf(k) − f(N) (73)

+
1
6

(f ′(N) − f ′(0)) − 1
360

(f ′′′(N) − f ′′′(0)) + ...

Applying (73) to f(k) = 2π(T/�)g(2kπT/�) gives:

S − Sc = (74)

2
∫ Ω

0

dxf(x) − 1
6

(
2πT

�

)2

g′(0) +
1

360

(
2πT

�

)4

g′′(0)

Sc = −2π
T

�
g(Ω) +

1
6

(
2πT

�

)2

g′(Ω) + ...
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and if the above integral converges we can take Ω → ∞
and the boundary term Sc vanishes.

A.2 More sophisticated EML formula

We now want to evaluate a more complicated sum such as
in (58):

S = 2π
T

�

∑

n

g1(|2π(n − m)T/�|)g2(|2πnT/�|) (75)

2π
T

�

∑

n

g1(|2πnT/�|)g2(|2π(n + m)T/�|)

with y = 2πmT/�, and where we leave aside the cutoff
from the beginning, i.e. n goes from −∞ to ∞. We choose
m > 0 but similar calculations hold also for m < 0. We
use the decomposition:

S = S1 + S2 + S3 (76)

+2π
T

�
g1 (|2πmT/�|) g2(0) + 2π

T

�
g1(0)g2 (|2πmT/�|)

with

S1 = 2π
T

�

−1∑

n=−∞
g1 (|2π(n − m)T/�|) g2 (|2πnT/�|)

S2 = 2π
T

�

m−1∑

n=1

g1 (|2π(n − m)T/�|) g2 (|2πnT/�|)

S3 = 2π
T

�

∞∑

n=m+1

g1 (|2π(n − m)T/�|) g2 (|2πnT/�|) .

Applying the standard Euler-MacLaurin formula (73)
to S1 one obtains up to terms of order O((T/�

4))

S1 = 2π
T

�

∞∑

n=1

g1 (2π(m + n)T/�) g2 (2πnT/�)

=
∫ ∞

0

dxg1(x + y)g2(x) − 1
2
2π

T

�
g1(y)g2(0)

+
(

2π
T

�

)2 1
12

(−g′1(y)g2(0) − g1(y)g′2(0)) (77)

similarly to S2

S2 = 2π
T

�

m−1∑

n=1

g1 (2π(m − n)T/�) g2 (2πnT/�)

=
∫ y

0

dxg1(y − x)g2(x) − 1
2
2π

T

�
g1(y)g2(0)

−1
2
2π

T

�
g1(0)g2(y)

+
(

2π
T

�

)2 1
12

(g′1(y)g2(0) − g1(y)g′2(0) − g′1(0)g2(y)

+g1(0)g′2(y)) (78)

and S3

S3 = 2π
T

�

∞∑

n=m+1

g1 (2π(n − m)T/�) g2 (2πnT/�)

=
∫ ∞

y

dxg1(x − y)g2(x) − 1
2
2π

T

�
g1(0)g2(y)

+
(

2π
T

�

)2 1
12

(−g′1(0)g2(y) − g1(0)g′2(y)) . (79)

Collecting the terms in (77, 78, 79) yields finally

S =
∫ ∞

0

dxg1(|x − y|)g2(x) +
∫ ∞

0

dxg1(x + y)g2(x)

−2
(

2π
T

�

)2 1
12

(g1(y)g′2(0)+g′1(0)g2(y))+O
(
(T/�)4

)
.

(80)

A.3 Euler Mc-Laurin vs. spectral representation

We want to compute the high β expansion of the following
Matsubara sum which enters the equation (58):

S̃(ωn) =
1

β�

∑

m

K1(ωm)K1 (ωn + ωm) . (81)

The Euler-MacLaurin formula established previously (80)
allows us to compute the first term of this expansion,
namely of order (T/�)2:

S̃(ωn) = S̃(ωn)|β�=∞ (82)

+
1

(β�)2
2π

3
∂xI0(x)|x=0J2(Σ0)K1(ωn) + O(

1
(β�)4

)

= S̃(ωn)|β�=∞ +
(

T

�

)2 2π

3

∫

q

A′
0(0, q)K1(ωn)

+O
(
(T/�)4

)

where A′
0(ω, q) is given in the text (61). We want to show

that this term of order (T/�)2 in (82) can be obtained in
a more standard way using a spectral representation to
compute the sum over Matsubara frequencies. Indeed, we
can write this sum (81) as

S̃(ωn) =
∫

q,q′

∫ +∞

−∞

du1

π

∫ +∞

−∞

du2

π
A0(q, u1)A0 (q′, u2)

× 1
β�

∑

m

1
iωm − u1

1
iωm + iωn − u2

(83)

with A0(q, ω) given in (61). The sum over the Matsubara
frequencies is then straightforwardly computed, and
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it gives

S̃(ωn) =
∫

q,q′

∫ +∞

−∞

du1

π

∫ +∞

−∞

du2

π
A0(q, u1)A0 (q′, u2)

×fB(u1) − fB(u2)
u2 − u1 − iωn

(84)

=
∫

q,q′

∫ +∞

−∞
du1

∫ +∞

−∞
du2

1
π2

A0(q, u1)A0 (q′, u2)

×fB(u1)
(

1
u2 − u1 − iωn

+
1

u2 − u1 + iωn

)

. (85)

The term in (T/�)2 in S̃(ωn) is obtained by computing
∂S̃(ωn)

∂1/(β�)2 , where the derivative concerns the explicit depen-
dence in β�, i.e. does not act on the implicit one of ωn.
This leads to

∂S̃(ωn)
∂1/(β�)2

= (86)

(β�)3

2

∫

q,q′

∫ +∞

−∞
du1

∫ +∞

−∞
du2

1
π2

A0(q, u1)A0(q′, u2)

×
(

1
u2 − u1 − iωn

+
1

u2 − u1 + iωn

)

u1
eβ�u1

(eβ�u1 − 1)2
.

The integral over u1 is well behaved due to the derivative
of the Bose factor and we can safely rescale u1 → β�x1:

∂S̃(ωn

∂1/(β�)2
= (87)

β

2

∫

q,q′

∫ +∞

−∞
dx1

∫ +∞

−∞
du2

1
π2

A0 (q, x1/β)A0 (q′, u2)

×
(

1
u2 − x1/β − iωn

+
1

u2 − x1/β + iωn

)

x1
ex1

(ex1 − 1)2
.

From that expression, we extract the coefficient of or-
der 1/(β�)2:

∂S̃(ωn)
∂1/(β�)2

∣
∣
∣
β�→∞

=
1
2

∫

q

A′
0(q, 0)

∫

q

∫ +∞

−∞

du2

π
A0(q, u2)

×
(

1
u2 − iωn

+
1

u2 + iωn

)∫ +∞

−∞

dx1

π
x2

1

ex1

(ex1 − 1)2

=
2π

3

∫

q

A′
0(q, 0)K1(ωn) (88)

where we have used the value of the integral

α =
∫ +∞

−∞
dxx2 ex

(ex − 1)2
=

2π2

3
. (89)

This calculation shows explicitly the equivalence (82),
(88) of the two methods to compute this low T expan-
sion. The expansion of the term entering the equation

for Σ1 + I1(ωn) can be written

4V̂ ′′′(0)
(β�)

∑

m

K1(ωm)(K1(ωm) −K1(ωn + ωn)) (90)

= 4V̂ ′′′(0)
∫ +∞

−∞

dω

2π
K1(ω)(K1(ω) −K1(ω + ωn))

+4
(

T

�

)2

V̂ ′′′(0)
2π

3

∫

q

A′
0(q, 0)(J1(Σ0) −K1(ωn))

+O
(
(T/�)4

)
. (91)

And using the equation for I0(ωn) given in the text (42),
the term of order (T/�)2 in (90) can simply be written

4V̂ ′′′(0)
(β�)

∑

m

K1(ωm)(K1(ωm) −K1(ωn + ωn)) (92)

= 4V̂ ′′′(0)
∫ +∞

−∞

dω

2π
K1(ω)(K1(ω) −K1(ω + ωn))

−I0(ωn)
(

T

�

)2
V̂ ′′′(0)
V̂ ′′(0)

2π

3

∫

q

A′
0(q, 0) + O

(
(T/�)4

)

as given in the text (60).

Appendix B: Low temperature expansion
to order O(�2): detailed calculations

In this appendix, we focus on the internal energy to or-
der O(�2) (66) and show how to extract the coefficient of
the term ∝1/(β�)2 in the expression

−�
2 V ′′′(0)

V ′′(0)
1

2(β�)2
∑

n

K1(ωn)
∑

n

I0(ωn)K1(ωn)

+
2�

2

3
V ′′′(0)

1
(β�)2

∑

m,n

K1(ωm)K1(ωn)K1 (ωn + ωn) .

(93)

Let us expand the first term of (93):

I=−V ′′′(0)
V ′′(0)

1
2(β�)2

∑

n

K1(ωn)
∑

n

I0(ωn)K1(ωn). (94)

The general structure of the high β� expansion of this
term is the following

I = I(0) +
I(2)

(β�)2
+ O

(
1
β4

)

. (95)

We are not interested in the constant as it does not con-
tribute to the specific heat and and focus here on the
computation of the first term I(2). We use a spectral
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representation to compute the Matsubara sums in I:

K1(ωn) =
1

cq2 + Σ0 + Mω2
n + I0(ωn)

(96)

=
−1
π

∫ +∞

−∞
duA0(q, u)

1
iωn − u

K1(ωn)I0(ωn) =
I0(ωn)

cq2 + Σ0 + Mω2
n + I0(ωn)

(97)

=
−1
π

∫ +∞

−∞
du (I ′′0 (u)B0(q, u) + I ′0(u)A0(q, u))

1
iωn − u

where A0(q, ω) is defined in the text (61) and

B0(q, ω) = ReGc0(iωm → ω + iδ) (98)

=
cq2 − ω2 + Σ0 + I ′0(ω)

(cq2 − ω2 + Σ0 + I ′0(u))2 + I ′′0 (u)2
. (99)

Using the identity

1
β�

∑

n

1
iωn − u

= −fB(u). (100)

I can be written

I =
−V ′′′(0)
V ′′(0)

1
2π2

∫ +∞

−∞
du1

∫

q

A0(q, u1)fB(u1) (101)

×
∫ +∞

−∞
du2

∫

q

(I ′′0 (u2)B0(q, u2)+I ′0(u2)A0(q, u2)) fB(u2).

We use this expression to compute the term of order
1/(β�)2, together with ∂

∂1/(β�)2 = − (β�)3

2
∂

∂(β�) , we have

∂I
∂1/(β�)2

= (102)

−V ′′′(0)
V ′′(0)

1
2π2

(β�)3

2

∫ +∞

−∞
du1

∫

q

A0(q, u1)u1
eβ�u1

(eβ�u1−1)2

×
∫ +∞

−∞
du2

∫

q

(I ′′0 (u2)B0(q, u2)+I ′0(u2)A0(q, u2)) fB(u2)

−V ′′′(0)
V ′′(0)

(β�)3

2

∫ +∞

−∞
du1

∫

q

A0(q, u1)fB(u1)
∫ +∞

−∞
du2

×
∫

q

(I ′′0 (u2)B0(q, u2)+I ′0(u2)A0(q, u2))u2
eβ�u2

(eβ�u2−1)2
.

After some manipulations, we obtain this coefficient:

∂I
∂1/(β�)2

∣
∣
∣
β�=∞

= (103)

V ′′′(0)
V ′′(0)

α

4π2
(
∫

q

A′
0(0, q)

∫ 0

−∞
du1

×
∫

q

(I ′′0 (u1)B0(q, u1) + I ′0(u1)A0(q, u1))

+
∫

q

(∂ωI ′′0 ) (0)B0(0, q)
∫ 0

−∞
du2

∫

q

A0(q, u2))

with α given in (89). We can simplify that expression using
the equations for I ′0(u) and I ′′0 (u) obtained from (42):

I ′′0 (ω) = 4V ′′(0)
∫

q

A0(q, ω) (104)

I ′0(ω) = −4V ′′(0)
(∫

q

1
cq2 + Σ0

− B0(q, ω)
)

which finally yields

∂I
∂1/(β�)2

∣
∣
∣
β�=∞

(105)

=
V ′′′(0)
V ′′(0)

α

2π2
(∂ωI ′′) (0)

∫

q,q′

∫ 0

−∞
duA0(q, u)B0(q′, u).

The high β� expansion of the following term

J =
2
3
V ′′′(0)

1
(β�)2

∑

m,n

K1(ωn)K1(ωn)K1(ωm + ωn)

= −2V ′′′(0)
3π3

∫ +∞

−∞
du1du2du3A0(u1)A0(u2)A0(u3)

× 1
(β�)2

∑

n,m

1
iωn − u1

1
iωm − u2

1
iωn + iωm − u3

(106)

is performed using the same kind of manipulations, which
lead to

∂J
∂1/(β�)2

∣
∣
∣
β�=∞

(107)

= −V ′′′(0)
V ′′(0)

α

2π2
(∂ωI ′′0 )(0)

∫

q,q′

∫ 0

−∞
duA0(q, u)B0(q′, u).

Combining (105) and (107) shows that the term of or-
der (T/�)2 cancels in (93), as given in the text (69).
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